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The role of lattice vibrations in the crystal properties related to the homogeneous strains is
discussed. Such properties depend on the individual phonon characteristics measurable by
vibrational spectroscopy. So, being applicable to powderlike samples, it can provide an
indirect information on those bulk characteristics which cannot be directly measured for
such samples. The piezoelectricity of cubic SiC, and the elasticity of tetragonal ZrO2 are
considered along with the phonon spectra. Thus the mechanism of the polarization of
sphalerite-like materials is elucidated; a contradiction between the elastic properties of the
t-ZrO2 lattice and the conventional interpretation of its Raman spectra is revealed. C© 1999
Kluwer Academic Publishers

1. Introduction
Most ceramics-forming crystalline compounds are only
accessible in the form of powder. This hinders the in-
vestigations of their bulk properties requiring single
crystals. Therefore, special attention is paid to the tech-
niques applicable to the powderlike and low-quality
crystal samples. Vibrational spectroscopy belongs to
that category: it is routinely used to study the behavior
of ceramic materials during processing and applica-
tion. However, as a rule, those studies do not concern
the elastic and piezoelectric bulk propertieswhich very
frequently remain poorly determined (if not completely
unknown). In this paper, we wish to discuss some in-
direct facilities of the vibrational spectroscopy in this
field, and to gain an insight into the microscopic nature
of the properties under consideration. In turn, when
dealing with powder-like samples, vibrational spec-
troscopy cannot provide objective data on the symmetry
of vibrations, which poses heavy tasks for their interpre-
tation. Therefore, we also wish to discuss the situations
where the information on the above mentioned bulk
properties can serve the solution of the spectroscopic
problems.

For such a discussion, themicroscopicmechanisms
of the coupling between the lattice vibrations and the
macroscopicstrains of the crystal must be clarified. Al-
though the information on this coupling lies outside the
conventional area of the direct experimental observa-
tions, a great deal of the understanding can be derived
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from lattice-dynamical treatments based on a simple
and physically transparent theory.

Within the harmonic approximation, customarily
used in the theory, the vibrating lattice can be regarded
as a set of the normal coordinates (normal vibrations)
each being specified by the frequency, eigenvector
(shape), and by the dipole and polarizability deriva-
tives. The normal coordinates form a space of internal
degrees of freedom of the crystal [1]. Those of them
which are Raman-active participate in the internal re-
laxation processes induced by the macroscopic strains
of the complex crystals [2], and thus influence the mi-
croscopic mechanism of those strains. So, such bulk
characteristics of the crystals as the elastic and piezo-
electric tensors would depend on the individual char-
acteristics of the normal vibrations.

Being a tool to study the normal coordinates, vibra-
tional spectroscopy can be a virtual source of the in-
formation on the elastic and electromechanical prop-
erties of crystalline materials if the role of the lattice
vibrations in these properties is understood and quan-
titatively estimated. The present paper is aimed to con-
sider the relationships between the above properties
of crystals and the longwave vibration characteristics
measurable by the standard routines of the Raman and
infrared spectrometries. The fundamentals were devel-
oped in works [1–4], but it seems that their applied as-
pects related to the concrete materials science problems
were not elaborated in detail.
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Below we provide some theoretical basis in which
the properties in question are considered in the least
complicated form (Section 2). Then, jointly with exper-
imental data and the results of the quantitative model
treatments, it is applied to the sphalerite-, and fluorite-
like ceramics-forming crystals, SiC and ZrO2 respec-
tively, with emphasis on the piezoelectric effect in the
former structure (Section 3), and on the elastic behavior
of the latter (Section 4). Concluding remarks are made
in Section 5.

2. General consideration
Vibrational, elastic, and piezoelectric properties of a lat-
tice can be naturally joined together within the frame-
work of the lattice-dynamical theory of homogeneous
strains of crystals [1]. Along this theory, the initial
instant strainUi (i =1–6 are Voigt’s indices; 1= xx,
2= yy, . . . ,6= xy) is generally followed by the two
processes: (i) an internal structural relaxation occur-
ring in the space of normal coordinatesQλ; (ii) the
variation of the lattice polarization1P which pro-
duces the macroscopic electric fieldE within the lattice.
These processes minimize potential energy densityV
and provide the stationary conditionsdV/d Qλ=0, and
dV/d Eα =0. Within the harmonic approximation, the
V value can be written as a quadratic form of variables
Ui , Qλ and Eα (normalization to a unit volume and
summation on repeated indices are assumed hereafter):

V = 1/2UkC0
ikUi + 1/2Qλω

2
λQλ +Ui Fλi Qλ

−1/2Eβε0ε
e
αβEα −Ui e

0
αi Eα − QλZαλEα (1)

in which the coefficients can be specified as follows:
C0

ik is a “bare” (nonrelaxed) elastic constant,ωλ is a
frequency ofλth phonon,Fλi is a so-called elastic-optic
coupling constant describing the “mechanical” force on
coordinateQλ induced by instant strainUi (nonzeroFλi

means that theλth vibration is Raman active [2]);ε0ε
e
αβ

is an electronic dielectric constant (hereε0 is permitiv-
ity of vacuum;α, β =1,2,3 are indices of the Cartesian
axis),e0

αi is a “bare” piezoelectric constant describing
the instant polarization of the strained lattice, andZαλ
is the effective dynamical charge which describes the
polarization properties of coordinateQλ.

ConditiondV/d Qλ=0 leads to

Qλω
2
λ +Ui Fλi − ZαλEα = 0 (2)

By excludingQλ in Equation 1, one obtains expression

V = 1/2UkCikUi − 1/2Eβε0ε
st
αβEα −Ui eαi Eα (3)

in which the coefficients have the following physical
sense:

Cik = C0
ik − Fλi Fλk

/
ω2
λ (4)

is an element of the elastic tensor at a constant electric
field;

ε0ε
st
αβ = ε0ε

e
αβ + ZαλZβλ

/
ω2
λ (5)

represents the static dielectric tensor, and

eαi = e0
αi − ZαλFλi

/
ω2
λ (6)

is the element of the piezoelectric tensor.
By applying conditiondV/d Eα =0 to expression

(3), one gets

V = 1/2Ui0ikUk (7)

where

0ik = Cik +
(
eαi eβk

/
ε0ε

st
αβ

)
(8)

is a piezoelectrically stiffened elastic constant, which
can be rewritten as

0ik = Cik(1+ k2) (9)

where thek2 value describes the electromechanical cou-
pling. Its components forα=β andi = k are electrome-
chanical coefficients squared, widely used in practice:

k2
αi = e2

αi

/
ε0ε

st
ααCii (10)

Equations 4–6 show that the elastic, dielectric and
piezoelectric characteristics of solids generally include
two contributions: the first terms in the right-hand sides
of Equations 4–6 specify the instant response of the lat-
tice to the change of parametersUi andEα, whereas the
second terms relate to the relevant relaxation processes
arising in the phonon subsystem.

The coefficientω2
λ in (1) determines the “mechani-

cal” stiffness of theλth phonon. TheZαλ andFλi values
are the phonon characteristics describing the coupling
of the phonon to the macroscopic fieldEα (a first-
rank tensor) and to the strainsUi (a second-rank ten-
sor) respectively. TheZ2

αλ value specifies the oscillator
strength of theλth mode. This value can be estimated
from the IR-reflection spectra, or from the TO-LO split-
ting in Raman spectra. TheFλi is not straightforwardly
accessible from the experiment. For any Raman-active
vibration participating in the relaxation processes, the
symmetry rules dictate the following properties: the vi-
bration which changes theαβ element of the polariz-
ability tensor is coupled to the macroscopic strainUi

having the same cartesian index (i =αβ). In particular,
a totally symmetric mode would provide contributions
to theUi (i =1,2,3) strains.

3. Silicon carbide SiC
It can be seen from Equation 6 that theλth vibration
contributing to thepiezoeffectis to be necessarily active
in the Raman scattering (Fλi 6=0), and in the infrared
spectra (Zαλ 6=0). The simplest structures possessing
such a property are the sphalerite-like lattices to which
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a series of ceramics forming materials belongs (3C-SiC,
AlN, BN, etc). The unavailability of large single crystal
is typical for these. Consequently, the measurements of
the piezo-elastic properties remain beyond the facilities
of the direct methods, whereas the phonon character-
istics, namely, theω2

λ and Z2
αλ values, are accessible

from the powder Raman spectra in which TO and LO
phonon frequencies can be well observed. In this Sec-
tion, we shall discuss the situation of the cubic silicon
carbide, and focus on the bulk polarization properties
of this lattice.

The longwave vibrational spectrum of a sphalerite-
like structure consists of a single triply degenerateT2
mode in which the sublattice of anions, and the sublat-
tice of cations move in opposite directions. This mode
has the properties described by a first-rank tensor (a
polarization vectorP), and by a second-rank tensor (a
non-diagonal polarizability matrix). As a result, this vi-
bration is coupled to the macroscopic electric field of
any polarization, and to any shear strain of the lattice.
Thus it contributes to thee14=e25=e36 piezoelectric
constants, and toC44=C55=C66 elastic constants.

In Fig. 1, a fragment of the sphalerite-like structure
is presented. Let us consider the effects occurring in
this lattice during a positive shear strainUi in theαβ
plane (which diminishes an angle between axesα and
β). We shall follow the approach used for SiC [5]. That
reflects the largely covalent nature of the compound
in implying that the chemical bonds play the central
role in the lattice dynamics and in the polarization ef-
fects. The arrows in Fig. 1 correspond to the atomic
shifts relevant to the instantUi shear strain. Due to
this strain, bonds 5-1 and 5-2 would be lengthened,
whereas bonds 5-4 and 5-3 would be shortened. At the
same time, angle 2-5-1 enlarges, and angle 3-5-4 di-
minishes. The relevant restoring forces would act on
anions and cations along theγ -axis in opposite direc-

Figure 1 The atomic displacement pattern of the sphalerite-type lattice
undergoing theαβ shear strain. Position (0, 0, 0) is occupied by a positive
ion; the position of a negative ion corresponds to (1/4, 1/4, 1/4).

tions. They form theFλi internal “mechanical” forces
(see Section 2). Concurrently, the above atomic shifts
would give rise to the instant electric fieldE0

γ =e0
γ i Ui

which produces electrostatic forces acting on the ions
together with the mechanical ones. To find a novel lat-
tice geometry providing the energy minimum (i.e., zero
net forces on ions), the two sublattices would displace
in opposite directions along theγ -axis. Consequently,
the Qλ (T2) normal coordinate and the electric field
would simultaneously vary until the above mentioned
stationary conditionsdV/d Qλ=0 anddV/d Eγ =0 be
fulfilled. This corresponds to the following values:

1Qλ = −
(
Fλi
/
ω2
λ

)
1Ui +

(
Zγ λ

/
ω2
λ

)
1Eγ (11)

1Eγ =
(
eγ i
/
ε0ε

st
γ γ

)
1Ui (12)

Equation 11 shows that theQλ (T2) normal coordinate
can be regarded as a spring which, in the strained lat-
tice, is loaded by the mechanical and electric forces
(the first and the second terms in the right-hand side
of Equation 11 respectively), and which is responsible
for the equilibrium in the lattice. Equation 12 shows
that the macroscopic fieldE results from the screened
piezoeffect.

The above considerations show that a polarization
mechanism of a strained lattice includes a number of
changeable factors. This makes the piezoelectric effect
a very subtle phenomenon. Actually, its magnitude and
sign depend on those of parametersFλi ,e0

αi and Zαλ
which are not predictable from the “common sense”.
Of course, the first two values, as well as the sign of the
third one, are not measurable. Therefore their model
considerations can be instructive.

The origin of theFλi value in the sphalerites was dis-
cussed above, and the lattice-dynamical studies [3, 5]
shows thatFλi isnegativein those structures. The origin
of thee0

αi andZαλ values depends on the mechanisms
of the lattice polarization. By using the simplest de-
scription of the dipole moment density,P= zsRs (here
Rs is the position vector of thesth ion, andzs specifies
the ionic charge), one can describe theα-component of
polarization1P as follows

1Pα = zs1Rsα +1zsRsα (13)

The first term in the right-hand side of (13) corresponds
to the displacements of the ionic charges, and the second
one describes thepurely electronic effect, namely, the
redistribution of the intrabond electron density, which
results in the charge variations1zs. Within our ap-
proach [5], this is associated with the changes of bond
lengthsL.

Being negligible in a mainly ionic lattice, the role
of the electronic term in (13) would increase with in-
creasing covalency of the interatomic bonds, but con-
sequences of this effect are ambiguous. Actually, for a
given atomic displacement pattern related to a macro-
scopic strain, the relevant electron redistribution would
eitherdecreasethe ionic charges magnitudes, thus can-
celling the first term in the right-hand side of (13), or
increasethem, thus adding to the ionic contribution. To
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clarify the situation of the sphalerite-like compounds,
let us analyse the dependences of theZαβ andeγ i val-
ues in these structures on the character of the chemical
bonding. The signs of those values are of importance
for this analysis. However, neither dielectric character-
istics (Equation 5), nor electromechanical ones (Equa-
tion 10) can give such an information, since they contain
those values squared. Therefore, we concentrate on the
Equation 6, and firstly concern thee0

γ i value, i.e., the
“instant” lattice polarization along theγ -axis, induced
by the unitαβ (=Ui ) nonrelaxed shear strain. Since
such a strain does not displace any atom in theγ direc-
tion (see Fig. 1), the ionic term in (13) is identical to
zero, and the relevant polarization (and thus a nonzero
value ofe0

γ i ) can result from the electron flow only. This
is negligible for a mainly ionic lattice CuCl. Therefore,
the positivesign of the piezoeffect (eγ i =0.16 C/m2)
observed for CuCl (experimental data from Refs. [4, 5]
will be used hereafter) must be associated with the sec-
ond term in the right hand of Equation 6. Consequently,
since Fλi <0, one can conclude thatZαλ >0 in this
compound.

The sphalerite family includes many members rang-
ing from the presumably ionic I–VII such as CuCl
(|Zαλ| =1.12e), through the II–VIs such as ZnS
(|Zαλ| =2.15e), through the III–Vs such as InSb
(|Zαλ| =2.43e), to the single IV–IV-cubic SiC
(|Zαλ| =2.7e). A monotonous increase of the abso-
lute magnitudes of theZαλ=d Pα/d Qλ value in this
series correlates with the increasing covalency of the
bonds, i.e., with an increasing role of the electronic
term in Equation 13. So, it is highly likely that, for all
the sphalerite-like structures, the sign of the electronic
contribution toZαλ is the same as that of the ionic one.
Thus, theZαλ value also keeps this sign. Since it is pos-
itive for CuCl lattice, it would remain positive for all
the structures under consideration.

According to the bond polarization mechanism [5],
the positiveness of the both terms in theZαλ value
means that the magnitudes of the ionic charges increase
as the bonds lengthen, and they decrease as the bonds
shorten. A bond elongation would cause the electron
charge to flow from the positive ion to the negative
one, and the bond shortening would move this charge
in the opposite direction. In the situation displayed in
Fig. 1, the electron charge would outflow from ions 2
and 1 (bonds 5-1 and 5-2 are lengthened), and would
flow to ions 3 and 4 (bond 5-3 and 5-4 are shortened).
As a result, anegativepolarization would arise along
theγ -axis. Consequently, it can be concluded that the
e0
γ i value isessentially negativein the sphalerite-like

lattices.
So, in contrast to theZαλ value, theeαi piezoelectric

constant value consists of the twocompetitivecontribu-
tions presented by the two terms in the right-hand side
of Equation 6. In the sphalerite-like compounds, the
magnitude of the first (negative) term would increase
with increasing covalency of the chemical bonds. In
parallel, the increasing elasticity of the bonds would
augment the phonon stiffness (ω2

λ) thus diminishing the
positive contribution of the second term. This explains
why the piezoeffect being strong and positive in the

mainly ionic lattices like CuCl (eγ i =0.16 C/m2) and
ZnO (eγ i =0.64 C/m2), drops in more covalent ZnSe
(eγ i =0.05 C/m2) and CdTe (eγ i =0.03 C/m2), and be-
comes negative for most (if not all) III–V structures,
for example,−0.07 C/m2 for InSb, and−0.16 C/m2 for
GaP. Since SiC is the most covalent (IV–IV!) sphalerite-
type lattice with a very high-frequencyT2 phonon
(ω=796 cm−1), it is highly anticipated that theeγ i

value is negative for this compound.
Cubic SiC is not accessible in the form of single crys-

tal, and the piezoeffect in it is not measured. In the same
time, the estimation [6] of thek2

31 electromechanical co-
efficient (9.8×10−4) for the hexagonal SiC seems to
be reliable. Thus one obtainse31=±0.2 C/m2 by us-
ing Equation 10 withC11=502 GPa [6] andεst

33=10
[5]. Then, following Ref. [7], one can regard the cu-
bic {111} plane as equivalent to the hexagonal{0001}
plane, and thus find a correlation between the piezo-
electric tensors of the cubic and hexagonal structures.
In this connection, it must be noted, that a relation-
ship ecub

14 =−2/
√

3ehex
31 proposed in early work [8] is

not valid, and the correct one isecub
14 =+3/

√
3ehex

31
[5]. By using the results of above considerations, one
readily obtains for cubic SiC valuee14=−0.35 C/m2

which seems to be rather reasonable in context with the
values measured for other sphalerite-like lattices [4].
Treating this value jointly withZαλ=+2.7e within
the framework of the lattice-dynamical model [5], we
find chargez(Si)=0.42e and its derivativedz(Si)/
dL(Si-C)=0.91e/A

◦
, thus revealing that thestatic ionic

chargez in SiC is almost of an order lower than theef-
fective dynamicalchargeZαλ.

The following issue thus can be made: (i) a largely
covalent bonding in SiC results in a highly rigidT2
phonon; consequently, the relaxation processes play a
secondary role in the shear strains, and the piezoeffect,
dominated by the intrabond electron flow, is essentially
negative and the strongest one among the sphalerite-
like materials and (ii) at volume expansion, the bond
lengthening wouldincreasethe ionic charges, thus pre-
disposing the lattice to dissociate intocharged ions.
Such an effect can occur during the sublimation of the
lattice.

4. Tetragonal zirconia ZrO2

One of the most technologically important mate-
rials zirconium dioxide ZrO2 has three polymorph
forms at ambient pressure. On cooling from the melt-
ing point (≈3100 K), it crystallizes into a fluorite-
like structure, and then undergoes a succession of
structural phase transitions, cubic (O5

h)→ tetragonal
(D15

4h)→monoclinic (C5
2h), each time with doubling the

primitive unit cell volume. The presence of impurities
like Y2O3, CaO, MgO etc. stabilizes the high-symmetry
phases of zirconia which thus can occur at room tem-
perature. The existence (and co-existence) of various
modifications of ZrO2 at ambient conditions makes the
identification of the structure an important and actual
problem to which vibrational spectroscopy is frequently
employed, since the longwave spectra of the zirconia
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Figure 2 The fragment of a cubic ZrO2 displaying the first coordination
spheres of zirconium (black circles) and oxygen (white circles). The
arrows represent the displacement pattern corresponding to the cubic-
tetragonal transformation.

polymorphs differ markedly. Although those spectra are
the objects of extensive studies, many points of their in-
terpretations remain debatable. This paper concerns the
points related to the assignments of the lines in the Ra-
man spectra oft-zirconia. We shall discuss them jointly
with the structural and elastic properties of thec- and
t-phases. For this, the system of the cubic axes will be
kept fort-phase.

The piezoeffect is forbidden in zirconia by symmetry,
and theV value (see Equation 1) can be rewritten as:

V = 1/2Ui C
0
ikUk + 1/2Qλω

2
λQλ +Ui Fλi Qλ (14)

Equation 4 describing the “mechanical” bulk elasticity
remains valid; Equation 11 reduces to view

1Qλ= −
(
Fλi
/
ω2
λ

)
1Ui (15)

The set of atomic shifts distorting thec-lattice into the
t-lattice is shown in Fig. 2: the oxygen atoms move
along a cubic axis, whereas the metals are immobile.
This displacement pattern is equal to that which would
be induced by a condensation of a so-called X−

2 mode
which belongs to the triply degenerate X-point of the
cubic Brillouin zone. In line with this, the results of the
formal theory-group analysis [9], the lattice-dynamical
treatments [10–13] and some experimental evidence
[13] strongly argue for the X−2 soft-mode mechanism
of the c-t inversion. The discussion which follows is
based on this position.

In the cubic phase, the ZrO2 lattice does not contain
totally symmetric vibrations. Therefore, theUi strains
with i =1,2,3 are not accompanied by internal relax-
ation processes. In thet-phase, the soft mode (which
will be labelled sm hereafter) becomes a single mode of
the totally symmetric A1g representation. Let us discuss
the consequences of this effect. Note first that the tetrag-
onal distortion of ZrO2 is driven by the amplitude1Qsm
of the “frosen” (totally symmetric) soft mode, i.e. by

magnitudes of oxygen shiftsδ shown in Fig. 2. These
destroy the cubic symmetry of the initial structure, and
give rise to the optic-acoustic coupling between the
A1g mode and theUi (i =1,2,3) macroscopic strains.
Therefore, spontaneous internal displacementsδ (i.e.,
1Qsm) associated with the phase transition would in-
duce those strains whose values are given by equilib-
rium conditionsdV/dUi =0 (see Equation 14),

1Ui = −
(
Fk sm

/
C0

ik

)
1Qsm (16)

To minimize the volume variation, those strains obey
the relations1U1=1U2≈−1/21U3, which corre-
sponds to

F1 sm= F2 sm≈ −1/2F3 sm. (17)

Consequently, the variations of the unit cell dimensions
1a=1b≈−1/21c take place. The model considera-
tions [10, 11] inambiguously show thatF3 sm<0. This
explains why the initial cubic unit cell transforms into
a tetragonal prism withc>a (see Equation 16).

Thus, the tetragonality of the D4h zirconia can be de-
scribed by two parameters: by the primary (internal)
parameterδ; and by the secondary (external) parame-
ter k= c/a. For the puret-zirconia,δ= δmax=0.065
(in c units), andk= kmax=1.024 [13]. For the stabi-
lized zirconia, the values of these parameters depend
on the quantity of dopants, and lie in the following
limits: 0<δ≤ δmax, and 1≤ k≤ kmax. The case when
δ >0, k=1 occurs in reality [14] and means that in-
ternal deformationsδ are not followed by the external
ones. From the lattice-dynamical point of view such a
situation would imply that, despite the occurrence of
the internal strain1Qsm, the external structural param-
eters do not relaxe (i.e., condition (16) is not satisfied),
and the lattice is anisotropically stressed.

So it can be said that the A1g normal coordinate of
the tetragonal zirconia is an effective spring which pro-
vides a coupling between the various effects: the micro-
scopic internal deformations, the external stresses, and
macroscopic strains of this lattice. In fact it dominates
the behavior of thet-structure. So, the knowledge of its
elasticity (ω2) is a key to understand the behavior of the
t-ZrO2 structure.

Because of the absence of the pure single crystals and
the disorder in the doped structures, the objective diffi-
culties occur for the reliable determination of the sym-
metry properties of the lattice vibrations int-zirconia.
However, a conventionally accepted assignment of the
Raman-active modes oft-ZrO2 can be found in liter-
ature [15, 16]. According to this, the A1g mode corre-
sponds to a weak line near 600 cm−1, in the vicinity
of the principal (former cubic T2g) band in the Raman
spectra. It was originally proposed in Ref. [15], and
since then is frequently cited (see e.g. [16]). To our be-
lief, some points of that assignment are worth another
look.

Note first that the above frequency of thesoft modeis
surprisingly high, and seems to be an exceptional case in
the spectroscopy of the displacive-type structural phase
transitions. None of the lattice-dynamical treatments
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of the cubic zirconia [10–12, 17] extrapolated to the
tetragonal structure can explain that effect. Actually,
during thec-t inversion of zirconia, there are no dra-
matic structural changes accounting for such a huge
hardening of the condensed phonon (which vanishes
at the c-t transition point). Besides, it appears that
strong doubts in the validity of the above assignment
of the A1g mode come from the comparative analysis
of the elastic constantsCik (i, k=1,2,3) of the cu-
bic and tetragonal ZrO2. The experimental values for
c-ZrO2 areC11=417 andC12=82 GPa [17]. TheCik

values for thet-phase are not measured (to our knowl-
edge), whereas those form-phase were investigated as
a function of temperature [18]. By extrapolating them
to the point of them-t transition, we can estimate the
values fort-ZrO2 asC11=340,C33=325,C12=33,
andC13=160 GPa. They markedly differ from the cu-
bic ones. Let us examine the origin of this difference.
In the cubic phase, theCik (i, k=1,2,3) elastic con-
stants consist of the first terms in the right-hand side of
Equation 4 only. Due to thec-t distortion, the crystal
geometry changes slightly. Consequently, there would
be no a considerable difference between the “instant”
elastic response of thet-lattice and that of thec-lattice.
In other words, it can be accepted that

C0
ik(tetr)≈ Cik(cub) (18)

(the model calculations [10, 11] lead to the same issue).
Therefore, the changes of elastic properties due to the
c-t distortion, namely, the decrease of the diagonal
valuesC11 andC33, and a huge splitting of the non-
diagonal onesC12 and C13 (see above) must be at-
tributed to the appearance of the totally symmetricsoft
modein thet-lattice, which gives rise to the relaxation
terms in Equation 4. According to relations (17), these
terms would diminish the tetragonal elastic constant
C11, C33, C12, and increaseC13, thus accounting for
the effects in question.

In jointly considering the measured magnitudes of
1Qsm (i.e., atomic shiftsδ), of 1Ui (i.e., the varia-
tions of the unit cell parameters), and of the elastic
constants along with Equations 4 and 16–18, one can
evaluate elasticityω2 of the A1g mode. This results in
the value of more than an order lower than that fol-
lowing from Ref. [15], and localizes the A1g mode
frequency below 300 cm−1, which is in line with the
lattice-dynamical model treatment [Ref. 11]. In fact,
the above consideration shows that if that mode had
a frequency of 600 cm−1, the relaxation processes in
the t-lattice would lose their significance and, in par-
ticular, theC12-C13 splitting would practically disap-
pear. In other words, the assignment of the A1g mode
in Refs. [15, 16] seems to be not compatible with the
behavior of the elastic properties of zirconia at thec-t
transformation.

5. Concluding remarks
The main point of this paper is that the vibrational
spectroscopy provides a quantitative information on the

main parameters of the theory of the macroscopic ho-
mogeneous strains of crystals. Therefore, together with
other experimental data and lattice-dynamical model
considerations, they can serve the indirect estimation
of the crystal bulk properties related to those strains,
when the direct methods are not effective. The last sit-
uation is typical for many ceramics-forming materials.
To exemplify this point, the properties of such mate-
rials. SiC and ZrO2 (for which the single-crystal data
are not accessible), were considered along with the rel-
evant spectroscopic data. The sign of the effective dy-
namical chargeZαβ and the value of the piezoelectric
constanteγ i thus were deduced for cubic SiC which is
the most covalent among the sphalerite-like structures
having heterogeneous interatomic bonds.

These results allow us to accomplish and self-
consistently arrange the information on the polariza-
tion properties for the series of the sphalerite-like com-
pounds ranging (with increasing covalency of bond-
ing) from I–VII to IV–IV ones. This explains why,
in this series, the dynamic chargeZαβ is positive and
monotonically increases from+1.12e (for CuCl) up
to +2.7e (for SiC), whereas the piezoelectric con-
stanteγ i first increases from+0.16 C/m2 (CuCl) to
+0.64 C/m2 (ZnO) and then monotonically decreases
down to−0.35 C/m2 (SiC). This series includes the in-
formation on the extremely ionic (I–VII) and the ex-
tremely covalent (IV–IV) members of the sphalerite
family. So it can be extrapolated to those compounds
which occupy the intermediate positions and whose
properties remain unknown.

The joint analysis of structural, elastic and vibra-
tional properties of tetragonal zirconia reveals a contra-
diction between the parameters of structural relaxation,
thec-t variation of the elastic constants, and a position
of the A1g mode near 600 cm−1. The above considera-
tions localize this mode below 300 cm−1. In such a case,
it appears that the reliable interpretation of the Raman-
active lines int-zirconia remains an open question.
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